DRONE
  • DRONE
  • MOBILITY
  • SPACE
  • ROBOTICS
  • 特集
  • コラム
  • ニュース
  • ABOUT US
Reading: パナソニックHD、屋外での画像認識精度を上げる悪天候除去AIを開発。従来の1/3のパラメータ数でもクリアな映像に
Share
DRONE
  • DRONE
  • MOBILITY
  • SPACE
  • ROBOTICS
  • 特集
  • コラム
  • ニュース
  • ABOUT US
検索
  • DRONE
  • MOBILITY
  • SPACE
  • ROBOTICS
  • 特集
  • コラム
  • ニュース
  • ABOUT US
Follow US
© 2013-2022 DRONE. All Rights Reserved.
ニュース

パナソニックHD、屋外での画像認識精度を上げる悪天候除去AIを開発。従来の1/3のパラメータ数でもクリアな映像に

パナソニック ホールディングス株式会社(以下、パナソニックHD)は、カリフォルニア大学 バークレー校(以下、UC Berkeley)、南京大学、北京大学の研究者らと、画像認識精度を著しく低下させる雨や雪、霧などを画像から除去することで、画像認識精度を向上させる悪天候除去AIを共同開発した

2024年2月19日
SHARE

本技術は、多重悪天候画像に対する画像認識およびセグメンテーションタスクにおいて、パラメータを72%以上、推論時間を39%節約しながら、従来法より認識精度を上げられる画像復元性能を示した。

- Advertisement -
Contents
技術の内容今後の展望

モビリティやインフラ分野など、屋外で利用される画像認識AIの応用が進んでいる一方、屋外で取得される画像は天候の影響をうけるため雨、雪、霧などの悪天候下では、物体の見えが大きく変化し、認識精度が著しく低下することが知られているという。

昨今、全天候で利用できる実用的なAIを実現するために雨、雪、霧などを画像から除去する“悪天候除去(Weather Removal)”と呼ばれるタスクが注目を集めている。これまで、天候の種類に応じ異なるモデルを準備したり、全天候で利用できるようモデルを統合する手法も提案されているが、計算量の多さがネックだ。

そこで本研究チームでは、異なる天候のパラメータを重みで表現することで、少ないパラメータ数で高精度に天候の影響を除去し、一つのモデルで、複数種類の天候とタスクに対応できる技術を開発した。本技術は、車載センサにおける危険検知やセキュリティカメラなど全天候で高精度な画像認識が必要とされる様々な場面での活用が期待できるという。

- Advertisement -

本技術は先進性が国際的に認められ、AI・機械学習技術のトップカンファレンスであるThe 38th Annual AAAI Conference on Artificial Intelligence(AAAI 2024)に採択された。

技術の内容

AI技術の進展に伴い、モビリティやインフラ分野など、屋外でもロバストな画像認識が求められる場面が増える一方、屋外では屋内と比べてコントロールできない要因が格段に増える。

特に、雨、雪、霧などの悪天候が画像中の物体の見えを大きく変化させ、認識精度を著しく下げることが産業応用上の課題とされ、雨粒の除去(Raindrop Removal)や、霧除去(Dehaze)など、悪天候除去(Weather Removal)タスクの研究開発が活発に進められている。

特定の天候やタスクに特化したAIモデル(エキスパートモデル)を構築する取り組みは一定の成果を見せているが、現実世界には「複数の天候が混在する悪天候」が存在し、より信頼性の高い判断が求められるという。

そこで、複数のエキスパートモデルを混合するアンサンブルモデルの研究もされているが、パラメータが激増することから、計算量の面で実用的なモデルは存在していない。

- Advertisement -

上記課題を解決するために、本研究チームはMoFME(Mixture-of-Feature-Modulation-Experts)を共同開発した。本技術は、画像認識精度を低下させる雨や雪、霧を1つのアンサンブルモデルで、かつ従来の1/3のパラメータ数で除去することが可能な悪天候除去AIだ。

図1 開発した悪天候除去AIの概略図

従来、天候やタスクに応じて複数のエキスパートモデルを用意する必要があった画像認識やセグメンテーションなどのタスクを、1つのアンサンブルモデルにより実用的な計算量で実現するため、2つの新しい手法を導入した。

1つ目は、複数のエキスパートモデルのパラメータを線形変換の重みで表現する「特徴変調エキスパート(Feature Modulated Expert)」という手法だ。異なるエキスパートモデルのパラメータを個別に学習するのではなく、特定のエキスパートモデルの線形変調により表現することで、総パラメータ数と計算量を削減した。

2つ目は、入力画像の特徴に応じて、各エキスパートモデルの寄与度を切り替える「不確実性を考慮したルーター(Uncertainty-aware Router)」という手法だ。各エキスパートモデルは、それぞれ得意とする天候が異なる。そこで、あるエキスパートモデルが、天候除去結果に余り自信がない(不確実性が高い)場合は、そのモデルの寄与度を下げ、逆の場合は寄与度を上げるよう最適化することで、アンサンブルモデルの信頼性を高め、画像認識性能を向上させた。

図2に、データセット“RainCityscapes”に対するMoFMEによる悪天候除去およびセグメンテーションの結果を示す。本技術は、雨と霧が混在するような複雑な画像に対しても、雨と霧の両方を除去し正解画像同等の結果を得た。さらに、悪天候下ではセグメンテーションの精度が著しく低下するが、MoFMEにより事前に悪天候除去を行うことで、セグメンテーションの精度低下を抑制できた。

本技術は、多重悪天候画像に対する画像認識およびセグメンテーションタスクにおいて、パラメータを72%以上、推論時間を39%節約しながら、従来法より認識精度を上げられる画像復元性能を示した。

図2 雨と霧が混在した入力画像に対するMoFMEの悪天候除去結果とセグメンテーションタスクへの効果

今後の展望

今回、共同開発したMoFMEは、画像認識精度を著しく低下させる雨や雪、霧などを画像から除去することで、それらが画像認識AIの性能に与える影響を低減する。従来の1/3のパラメータ数で雨も霧もクリアに復元できることから、モビリティやインフラ分野など、屋外でもロバストな画像認識が求められる場面での活用が期待できるという。

今後もパナソニックHDは、AI技術の社会実装を加速し、クライアントのくらしやしごとの現場で貢献するAI技術の研究・開発を推進していくとしている。

▶︎パナソニック

DJI Matrice 4Tが広大な遊水地上空で活躍。DJI Dock 2も投入、ドローンによる「ヨシ焼き」残火確認 現場レポート
2025年3月21日
大林組とKDDIスマートドローン、ドローンポート「DJI Dock 2」を活用し能登半島で道路工事の作業効率化を推進
2024年11月20日
ドローン操縦スキル上達のために。DPA回転翼3級から国家資格がベスト![後編]
2024年9月30日
ドローン操縦スキル上達のために。DPA回転翼3級から国家資格がベスト![前編]
2024年9月30日
TAGGED: AI, Panasonic, パナソニック
kawai 2024年2月19日
Share this Article
Facebook Twitter Copy Link Print
Share
Previous Article アストロスケール、商業デブリ除去実証衛星「ADRAS-J」打上げ成功
Next Article 「あいちロボット産業クラスター推進協議会」第22回無人飛行ロボット活用ワーキンググループの参加者を募集!ドローンビジネスの創出に向けて
- Advertisement -

最新ニュース

250612_JD_Soradynamics_top
Soradynamics、産業用ドローン「Hayate 2」と「隼」を展示。安全に運用できる高機能性[JapanDrone2025]
特集 2025年6月12日
2540612_JD_riegl_top
RIEGLの新LiDAR「VUX-100-25」、FOV160°で133万点/秒取得能力を搭載。マルチコプターでの高効率測量を実現[JapanDrone2025]
特集 2025年6月12日
250612_JD_roboz_top
ROBOZ「Litebee Stars」が実現する小規模屋内ドローンショー。教育コンテンツとしても注目[JapanDrone2025]
特集 2025年6月12日
「DRONE SHOW JAPAN PRESENTS STARMIRAGE IN OSAKA TEMMABASHI」延べ5万5千人が天満橋エリアに来場
「DRONE SHOW JAPAN PRESENTS STARMIRAGE IN OSAKA TEMMABASHI」、延べ5万5千人が天満橋エリアに来場
ニュース 2025年6月12日
【水中ドローン体験会】カナダ製水中ドローン『DeepTrekker』自動航行機能を東京で体験し検討できる
水中ドローン体験会:カナダ製水中ドローン「DeepTrekker」自動航行機能を東京で体験し検討できる
ニュース 2025年6月11日
- Advertisement -

関連記事

NVIDIA_top
ニュース

NVIDIA、米国で初めて国産AIスーパーコンピューターを製造。5000億ドル投資、AIインフラ構築へ

2025年4月15日
ニュース

リッジアイ、JAXAと地球デジタルツイン研究に向けたAIを実証

2025年3月24日
250317_PIMTO_top
ニュース

パナソニックHDら3社、成田空港で移動型無人販売サービス「PIMTO」の実証実験を実施。外国人旅客向けに日本らしい商品販売

2025年3月18日
250317_Anduril_top
ニュース

Anduril、米海兵隊へ対無人航空機システムを提供。AI活用し24時間365日、自律的に脅威に対処

2025年3月17日
Previous Next

DRONEとは

DRONE(https://www.drone.jp/、以下本サイト)は、ドローンやマルチコプターについての本格的な解説やおすすめ、最新情報を発信する日本初のメディアとして、「Explore the Future」をタグラインに2015年スタートしました。

2022年、時代とテクノロジーの急速な進化を押さえ、ドローンを起点に、「空飛ぶクルマ」、「自動運転」、「AI」、「ロボティクス」、「電気自動車(EV)」、「宇宙関連」など、時代を変えていく国内外のテクノロジーについて、幅広くみなさまにお伝えします。

メディアパートナー

ページ一覧

  • Home
  • DRONE
  • MOBILITY
  • SPACE
  • ROBOTICS
  • 特集
  • コラム
  • ニュース
  • ABOUT US
  • プライバシーポリシー

アーカイブ

姉妹サイト

PRONEWS(プロニュース)は、デジタル映像制作専門情報Webメディア

DRONE
Follow US

© 2013-2023 DRONE. All Rights Reserved.

Welcome Back!

Sign in to your account

Lost your password?